Making the Edge-Set Encoding Fly by Controlling the Bias of Its Crossover Operator

نویسندگان

  • Franz Rothlauf
  • Carsten Tzschoppe
چکیده

The edge-set encoding is a direct tree encoding which applies search operators directly to trees represented as sets of edges. There are two variants of crossover operators for the edge-set encoding: With heuristics that consider the weights of the edges, or without heuristics. Due to a strong bias of the heuristic crossover operator towards the minimum spanning tree (MST) a population of solutions converges quickly towards the MST and EAs using this operator show low performance when used for tree optimization problems where the optimal solution is not the MST. This paper presents a modified crossover operator (γ-TX) that allows us to control the bias towards the MST. The bias can be set arbitrarily between the strong bias of the heuristic crossover operator, or being unbiased. An investigation into the performance of EAs using the γ-TX for randomly created OCST problems of different types and OCST test instances from the literature present good results when setting the crossover-specific parameter γ properly. The presented results suggest that the original heuristic crossover operator of the edge-sets should be substituted by the modified γ-TX operator that allows us to control the bias towards the MST.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Edge-Set Encoding Revisited: On the Bias of a Direct Representation for Trees

The edge-set encoding is a direct tree representation which directly represents trees as sets of edges. There are two variants of the edge-set encoding: the edge-set encoding without heuristics, and the edge-set encoding with heuristics. An investigation into the bias of the edge-set encoding shows that the crossover operator of the edge-set encoding without heuristics is unbiased, that means i...

متن کامل

Group Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making

Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...

متن کامل

AN EFFICIENT CROSSOVER OPERATOR FOR TRAVELING SALESMAN PROBLEM

Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several crossover operators have been proposed for solving the travelling salesman problem (TSP) in the literature. These operators have paid less attention to the characteristics of the traveling salesman problem, and majority of these operators can only generate feasible solutions. In this paper, a crossover ...

متن کامل

Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over

Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...

متن کامل

Trapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making

In some multi-attribute decision making (MADM) problems, various relationships among the decision attributes should be considered. This paper investigates the prioritization relationship of attributes in MADM with trapezoidal intuitionistic fuzzy numbers (TrIFNs). TrIFNs are a special intuitionistic fuzzy set on a real number set and have the better capability to model ill-known quantities. Fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005